Informationally complete measurements from compressed sensing methodology
نویسندگان
چکیده
Characterizing complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well-designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal reconstruction technique known as “compressed sensing” has been ported to quantum information science to overcome this challenge: accurate tomography can be achieved with substantially fewer measurement settings, thereby greatly enhancing the efficiency of quantum tomography. Here we show that compressed sensing tomography of quantum systems is essentially guaranteed by a special property of quantum mechanics itself—that the mathematical objects that describe the system in quantum mechanics are matrices with nonnegative eigenvalues. This result has an impact on the way quantum tomography is understood and implemented. In particular, it implies that the information obtained about a quantum system through compressed sensing methods exhibits a new sense of “informational completeness.” This has important consequences on the efficiency of data taking for quantum tomography, and enables us to construct informationally complete measurements that are robust to noise and modeling errors. Moreover, our result shows that one can expand the numerical tool-box used in quantum tomography and employ highly efficient algorithms developed to handle large dimensional matrices on a large dimensional Hilbert space. While we mainly present our results in the context of quantum tomography, they apply to the general case of positive semidefinite matrix recovery.
منابع مشابه
Quantum tomography protocols with positivity are compressed sensing protocols
Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well-designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal reconstruction technique known as ‘compressed sensing’ has been ported to quantum informatio...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملCompressed sensing and sparsity in photoacoustic tomography
Increasing the imaging speed is a central aim in photoacoustic tomography. This issue is especially important in the case of sequential scanning approaches as applied for most existing optical detection schemes. In this work we address this issue using techniques of compressed sensing. We demonstrate, that the number of measurements can significantly be reduced by allowing general linear measur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1502.00536 شماره
صفحات -
تاریخ انتشار 2015